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Abstract 

Background:  Analysing distributed medical data is challenging because of data sensitivity and various regulations to 
access and combine data. Some privacy-preserving methods are known for analyzing horizontally-partitioned data, 
where different organisations have similar data on disjoint sets of people. Technically more challenging is the case of 
vertically-partitioned data, dealing with data on overlapping sets of people. We use an emerging technology based 
on cryptographic techniques called secure multi-party computation (MPC), and apply it to perform privacy-preserv-
ing survival analysis on vertically-distributed data by means of the Cox proportional hazards (CPH) model. Both MPC 
and CPH are explained.

Methods:  We use a Newton-Raphson solver to securely train the CPH model with MPC, jointly with all data holders, 
without revealing any sensitive data. In order to securely compute the log-partial likelihood in each iteration, we run 
into several technical challenges to preserve the efficiency and security of our solution. To tackle these technical chal-
lenges, we generalize a cryptographic protocol for securely computing the inverse of the Hessian matrix and develop 
a new method for securely computing exponentiations. A theoretical complexity estimate is given to get insight into 
the computational and communication effort that is needed.

Results:  Our secure solution is implemented in a setting with three different machines, each presenting a different 
data holder, which can communicate through the internet. The MPyC platform is used for implementing this privacy-
preserving solution to obtain the CPH model. We test the accuracy and computation time of our methods on three 
standard benchmark survival datasets. We identify future work to make our solution more efficient.

Conclusions:  Our secure solution is comparable with the standard, non-secure solver in terms of accuracy and 
convergence speed. The computation time is considerably larger, although the theoretical complexity is still cubic 
in the number of covariates and quadratic in the number of subjects. We conclude that this is a promising way of 
performing parametric survival analysis on vertically-distributed medical data, while realising high level of security 
and privacy.
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Background
In biomedical research, linking data from multiple 
sources can make analyses more robust and allows stud-
ies to take into account additional information. These 
combined datasets might reveal patterns that the data in 
isolation cannot. For example, after combining data from 
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cancer registries and general practices, additional infor-
mation of the patient can be included in survival studies, 
e.g. comorbidities, alcohol consumption, or prescribed 
drugs. By doing so, individuals’ clinical and demographic 
characteristics can be taken into account when devel-
oping risk prediction models. A more individualized 
approach to survival analysis will lead to more accurate 
information for patients and clinicians to support their 
decision-making [1]. Similarly, in another study, where 
cancer registry data was combined with pharmaceutical 
data, aspirin use after the diagnosis of colon cancer was 
associated with increased overall survival [2]. Evidently, 
combining data can lead to discoveries with profound 
clinical implications.

Due to the sensitive nature of medical data, however, 
it is challenging for organisations to share and combine 
data. Legal frameworks like the General Data Protec-
tion Regulation1(GDPR) and the Health Insurance Port-
ability and Accountability Act2 (HIPAA) further restrict 
the usage and exchange of medical data. This challenge 
is holding back research and our ability to reflect on the 
care and prevention of diseases. To overcome this chal-
lenge while respecting such regulation, new methods are 
needed to enable research on distributed data while pro-
tecting patient sensitive information.

We distinguish two types of distributed data: hori-
zontally-partitioned and vertically-partitioned. When 
data is horizontally-partitioned, each data holder stores 
identical items but of different patients, e.g. national can-
cer registries. Advances in machine learning have led to 
methods for federated learning, which are able to train 
models on horizontally-distributed data. With federated 
learning, statistical techniques are broken down in multi-
ple parts to run on distributed datasets. Only aggregated 
statistics are shared between parties and the final result is 
equivalent to the same analysis being performed on the 
combined dataset. Federated learning is already used in 
several clinical studies with data from multiple institu-
tions [3, 4]. In general, however, it is hard to determine 
whether the statistics that are shared do not reveal more 
than intended. In some cases these can be susceptible to 
reconstruction attacks [5].

When data is vertically-partitioned, each data holder 
manages different items but about the same sets of 
patients. While federated learning might work in some 
vertical cases, it is often a lot more challenging since 
correlations between covariates are locally unknown. 
Instead, another promising technology in the form of 

secure multi-party computation (MPC) is able to deal 
with this scenario while achieving high levels of security. 
This technique is discussed in more detail below.

In this article we focus on the latter scenario and pro-
pose a privacy-preserving version of the Cox propor-
tional hazards (CPH) [6] model for vertically-partitioned 
data. The primary audience of this paper are application-
driven researchers that are interested in privacy-pre-
serving survival analyses, such as clinical data scientists 
and applied cryptologists. Together, these disciplines are 
able to fully leverage the information that is hidden in 
distributed, sensitive data sources, improve our under-
standing of complex diseases and therewith contribute to 
improved treatment and well-being of patients. Although 
the motivation of the presented research is clinical oncol-
ogy, the results generalize to many other types of bio-
medical, clinical studies.

Cox proportional hazards
The Cox proportional hazards model is a multivariate 
regression model commonly used in medical research 
for investigating the impact of one or more covariates 
on the survival probabilities of subjects. It is a widely-
recognized tool in survival analysis of a particular group 
of subjects I  participating in an ‘experiment’, and at any 
time they either (1) continue to ‘live’ in the experiment, 
(2) ‘fail’ in the experiment, or (3) decide to no longer par-
ticipate in the experiment, and hence become ‘censored’. 
The CPH model explicitly takes this last group of subjects 
into account, as their data is valuable even if they did not 
finish the experiment.

For a subject I ∈ I  with p covariates ZI = (ZI
1, . . . ,Z

I
p) , 

the CPH model assumes that the hazard function 
�(t|ZI ;β) can be expressed as

where �0(t) is the baseline hazard function that reflects 
the underlying hazard for subjects with all covari-
ates equal to zero (also-called ‘reference group’) and 
β = (β1, . . . ,βp) is the trained model vector that assigns 
a weight to every covariate that corresponds to its impact 
on the hazard of a subject.

An important aspect of Cox regression model is that 
the relative risk of two events is constant over time. A 
consequence of this property is that, if we write the log of 
the hazard ratio for subject I to the baseline,

then the CPH model simplifies to a linear model for 
the log of the hazard ratio. The main advantage of this 

(1)�(t|ZI ;β) = �0(t) exp
[

β1Z
I
1 + β2Z

I
2 + · · · + βpZ

I
p

]

log

[

�I (t)

�0(t)

]

= β1Z
I
1 + β2Z

I
2 + · · · + βpZ

I
p,

1  https://​gdpr-​info.​eu.
2  https://​www.​govin​fo.​gov/​conte​nt/​pkg/​PLAW-​104pu​bl191/​pdf/​PLAW-​
104pu​bl191.​pdf.

https://gdpr-info.eu
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf
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family of regression models is that we can estimate the 
parameters β without having to estimate �0(t) and hence 
without assuming any particular parametric model for 
the baseline hazard function; in particular, the model is 
semi-parametric. In this article, we train the CPH model 
using Breslow’s approximation of the partial likelihood 
function [7].

Secure multi‑party computation
MPC is a cryptographic technique that enables multi-
ple parties, each having private inputs, to jointly evalu-
ate a function on their data, without revealing their data 
to each other. Starting in 1982 with Yao [8], the field has 
become more mature in the final decade with a so-called 
share-compute-reveal approach. In this approach, the 
secret data of every party is distributed in shares that 
independently do not reveal any information about the 
secret data, but can together be used to reconstruct the 
secret data. These shares are distributed over the par-
ties, who are then able to perform computations with 
the shares that correspond to the operations that one 
would like to perform on the original secret data. When 
the final, manipulated shares are combined, the parties 
obtain the result of the computation as if it were per-
formed in the traditional, non-cryptographic way. In par-
ticular, it is possible to add, multiply and compare secret 
values of different parties without revealing their data.

The field has further progressed by e.g. adding a pre-
processing phase for speed-up, leading to efficient MPC 
platforms like SPDZ  [9] and MASCOT  [10]. We use 
MPyC  [11] for our implementations, a Python based 
framework based on Shamir secret sharing  [12]. MPyC 
uses the semi-honest security model, meaning that par-
ties might be curious to learn sensitive data of other par-
ties, but are not able to derive this data as long as they 
follow the rules of the cryptographic protocol. This 
assumption resembles the healthcare setting where 
the main goal of collaboration is to obtain new medical 
insights.

More formally, we assume that at least half of the par-
ties do not collude with others (e.g. share information) 
to deduce information. In order to protect the security 
and integrity of the exchanged information, we assume 
that the communication channels have been end-to-
end encrypted. In this setting, the only way for parties 
to deduce each other’s sensitive information, is from (1) 
their own input data and (2) the received output of the 
computation, which from a security perspective is the 
best we can achieve.

Related work
In 2016, Shi et al. [13] presented a solution for grid logis-
tic regression on horizontally-partitioned data. While 

using MPC they ran into problems of securely invert-
ing the Hessian matrix and computing natural expo-
nentiation, but they were able to find workarounds. As 
our situation is more complex, due to increased algo-
rithm complexity and different data partitioning, we had 
to find different solutions for these challenges, which 
are described in “Secure exponentiation protocol” and 
“Matrix inverse protocol” sections respectively.

Several publications describe approaches for privacy-
preserving Cox regression. The works by Yu et  al.  [14] 
and Lu et  al.  [15] consider horizontally-partitioned 
data, whereas the recent work of Dai et al. [16] assumes 
vertically-partitioned data. The work by Domadiya and 
Rao  [17] also considers vertically-partitioned healthcare 
data, for which they present a privacy-preserving asso-
ciation rule mining technique.

Yu et  al. preserve privacy by mapping the data to a 
lower dimensional space  [14]. They construct their aff-
ine, sparse mapping by solving a linear program that 
optimizes the map in such a way that certain properties 
are maintained (e.g. ordering imposed by survival time, 
covariate selection) and thereby improve on earlier works 
that use random mappings. The Cox model is publicly 
trained on the lower-dimensional data and achieves near-
optimal performance.

Lu et  al. design and implement a Web service, Web-
DISCO, for joint training of a Cox regression model [15]. 
Based on federated learning ideology, they achieve pri-
vacy-preservation by sharing aggregated information 
only instead of individual data records. The obtained 
model is mathematically equivalent to a model that is 
trained directly on the joint data.

Dai et  al. consider vertically-partitioned data and lev-
erage the alternating direction method of multipliers 
(ADMM)  [18] to directly train the model to its opti-
mum3 [16]. Note that the ADMM method itself is itera-
tive. The authors present their work in a client-server 
setting where each client only transmits aggregated 
intermediary results to the server in each iteration. The 
server performs heavier computations than the client. 
The subject-level data never leaves the client’s organiza-
tion, although all parties must know which subjects expe-
rienced an event (not the event time). The final model 
is equivalent to the model that is trained directly on the 
joint data.

Our work also assumes vertically-partitioned data, 
but otherwise follows a different approach from Dai 
et al. [16]. Firstly, instead of a direct approach, we lever-
age the Newton–Raphson method for iterative training 

3  Source code of VERTICOX is available at https://​github.​com/​daiwe​nrui/​
VERTI​COX.

https://github.com/daiwenrui/VERTICOX
https://github.com/daiwenrui/VERTICOX
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of the CPH model. Secondly, we perform all computa-
tions in the encrypted domain using secure multi-party 
computation instead of computations in the plain where 
privacy is preserved through aggregation. Aggregation 
may provide a solid preservation of privacy; however, in 
practice it is hard to make this precise and obtain math-
ematical guarantees on the security that is provided.

Our contributions are the following:

•	 A novel protocol for training a privacy-preserving 
CPH model in the encrypted domain. The model is 
trained in an iterative fashion using the Newton–
Raphson method for optimizing Breslow’s partial 
likelihood function.

•	 Fundamental and widely-applicable protocols for 
computing exponentiations in the secure domain. 
That is, we securely compute ax for known a > 0 and 
encrypted x.

•	 A new protocol for securely inverting a non-integer 
matrix. We use a known approach for integer matri-
ces, and adjust it to our needs.

•	 A recursive approach for accurately computing the 
gradients without using floating point arithmetic.

Privacy-preservation of input data during computation 
is an important aspect of privacy-preserving machine 
learning. However, preserving privacy during compu-
tation by means of aggregation or encryption does not 
prevent a malicious user to deduce sensitive information 
from the output of the computation. Although we did not 
look into this aspect in our work, we do want to mention 
some works that consider this aspect. O’Keefe et al. [19] 
describe several methods for what they call “confiden-
tialising” the CPH output. For example, they suggest that 
using a random 95% of the training data, robust esti-
mators and rounded or binned outputs can reduce the 
information leakage of the CPH output while preserv-
ing the most important characteristics. Although some 
of the techniques seem to improve privacy preservation, 
one should note that no mathematical guarantees of the 
effectiveness of the presented techniques are presented.

Another approach is persued by Nguyên and Hui  [20] 
and Nguyên [21], who design differentially private meth-
ods for generalized linear models and the CPH model. 
Differential privacy is a mathematical framework ensur-
ing that an adversary is not able to deduce the exact pri-
vate information of a targeted subject from the trained 
model [22]. This is achieved by adding noise to the data, 
the penalty function or the trained model and usu-
ally result in an accuracy-privacy trade-off. The work 
of Nguyên  [21] does not consider distributed data. In 
contrast, we consider distributed data and no noise is 
added anywhere in the process. Both works may yield 

interesting and partially orthogonal complements to our 
work.

Methods
In this section, we train a CPH model on confidential, 
vertically-partitioned data. We assume that (at least) two 
parties know several complementary covariates of the 
same set of subjects and wish to collaboratively train a 
CPH model without ever revealing the personal data in 
their possession to each other. Their goal is achieved by 
means of MPC protocols.

This section is structured as follows. We first elaborate 
on the distribution of data over the participating par-
ties. Subsequently, we introduce the partial likelihood of 
CPH model and explain how it can be optimized using 
a Newton–Raphson solver. Finally, we introduce the 
privacy-preserving protocols that train the CPH model 
in the encrypted domain, thereby greatly enhancing the 
subjects’ privacy. Two generic building blocks, secure 
exponentiation and secure matrix inverse, are described 
in separate sections to highlight their independence of 
the secure CPH protocol.

A list of symbols used throughout this section is pre-
sented in Table 1.

Participating parties and their data
The setting of this article is that m ≥ 2 parties wish to 
jointly train a CPH model on their sensitive, vertically-
partitioned data. One of the parties provides the event 
time XI , censoring information δI and possibly a subset 
of covariates ZI

1, . . . ,Z
I
p′1

 . Every other party i provides 
complementary covariates ZI

p′i−1+1
, . . . ,ZI

p′i
 , p′m = p for 

the same subjects I. Together, the parties thus have a 
richer understanding of every subject in their shared 

Table 1  Overview of symbols

Symbol Definition

m Number of parties involved in the MPC protocol

N Secret-sharing modulus

n Number of subjects

I Set of all subjects

J Number of distinct event times

Dj Set of subjects that experience an event at time tj
dj Number of subjects that experience an event at time tj ; |Dj |

Rj Set of subjects at risk (alive and uncensored) at time tj
L(·) Log-likelihood function for CPH model

p Number of covariates

Z p-Dimensional vector of explanatory covariates

β p-Dimensional vector of model parameters

Z
I Realisation of the p-dimensional covariate vector Z for subject I
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population. Note that this is different from a horizontal 
partitioning, where every party has the same covariates 
of different populations.

In our implementation we assume that, if there are only 
two data-owning parties (e.g. there is no third party who 
also contributes data to the computation), then there 
exists a helper party who is trusted to the extend of truth-
fully evaluating the protocol and not colluding with oth-
ers. However, no sensitive data is revealed to the helper 
and as such the required level of trust in the helper is 
lower than what would be required for a (traditional) 
trusted third party that obtains all the data. The addi-
tional helper participates in the protocol for security and 
efficiency reasons only; all secure protocols can be imple-
mented in a suitable two-party MPC framework.

In practice, it is unlikely that the datasets of all players 
contain precisely the same subjects. Moreover, it is not 
quite certain that the subjects are ordered in the same 
manner. It is possible to start from this setting and then 
progress to a situation where all parties made a (secure) 
selection such that both datasets contain the same sub-
jects and in the same order. Depending on the type of 
identifiers used, this can be achieved in traditional ways, 
or by using cryptographic protocols  [23]. Instead, in 
this article we assume that the intersecting and aligning 
of databases has already been performed in such a pre-
processing phase, which allows us to focus on the secure 
implementation of the CPH model.

Optimizing Breslow’s approximation
The estimation procedure for the CPH model uses a par-
tial likelihood approach that produces estimates for β 
without involving �0(t) . The estimate depends on obser-
vations (XI , δI ,ZI ) for every subject I that participates 
in the experiment, where XI is the censored failure time 
random variable, δI the failure-censor indicator and ZI 
the set of covariates. In particular, δI = 1 if the subject 
failed at time XI whereas δI = 0 if the subject got cen-
sored at time XI , presumably because the subject stopped 

participating in the experiment while being alive.
We consider Breslow’s approximation [7] of the partial 

likelihood, which allows for tied event times XI = XJ . 
The approximation groups subjects according to their 
censored event time, so let t1 ≤ t2 ≤ · · · ≤ tJ denote 
the unique elements of the set {XI : δI = 1} . That is, 
the first time that there were actual failures among all 

subjects was t1 , the second such time was t2 , etc. We 
refer to these times as the distinct event times. We define 
Dj := {I : XI = tj , δ

I = 1} as the set of subjects that 
experienced failure at time tj and let Rj := {I : XI ≥ tj} 
denote the set of subjects that were at risk at time tj . 
Finally, the number of actual failures at time tj is denoted 
by dj := |Dj| . Breslow’s approximation of the partial like-
lihood is given by

Cox recommended to treat the partial likelihood as a 
regular likelihood for making inferences about β , in the 
presence of the nuisance parameter �0(·) . Therefore, let 
us consider the log-partial likelihood

We aim to optimize the log-likelihood by applying the 
iterative Newton–Raphson method;

Here, ∇l(β) =
(

∂l
∂β1

(β), . . . , ∂l
∂βp

(β)
)

 and 
∇2l(β) =

(

∂2l
∂βr∂βs

(β)
)

r,s∈{1,...,p}
 are the gradient and the 

Hessian matrix of l(β) , respectively. Their elements are 
given by

and

for every r, s ∈ {1, . . . , p} . Alternative representations of 
and methods for training CPH model are discussed by 
[16, 24–26].

Secure CPH protocol
This section presents a secure version of the Newton–
Raphson solver that was described above for training the 

(2)L(β) =

J
∏

j=1

∏

I∈Dj
eβ

T
Z
I

(

∑

I∈Rj
eβ

T
Z
I

)dj
.

(3)

l(β) = log(L(β))

=

J
�

j=1







βT
�

I∈Dj

Z
I − dj log





�
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eβ
T
Z
I











.

(4)βt+1 = βt −

(

∇2l(βt)

)−1
∇l(βt).

(5)
∂l

∂βr
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J
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CPH model. As we elaborate on every step of the proto-
col, we pay special attention to the limitations of fixed-
point arithmetic and finite fields that motivated us into 
designing the most interesting protocol steps.

Overview secure CPH protocol
We now provide the blueprint of our secure m-party 
implementation of the CPH protocol. The secure pro-
tocol can be implemented in any linear secret-sharing 
platform that tolerates a dishonest minority of up to t 
passively corrupt parties (e.g. 0 ≤ t < m/2 ). The plain-
text modulus is denoted by N and secrets are denoted 
by [.]. The statistical security parameter is denoted by 
σ . We assume that the platform supports fixed-point 
arithmetic rather than floating-point arithmetic. When 
a secret value x is split into shared for distribution and 
computation, we say that x is secret-shared; contrastingly, 
information that is shared has not been encrypted unless 
mentioned otherwise.

The idea is to secret-share the data ZI and perform 
some one-time manipulations. From the secret-shared 
data, we compute secret-shared model parameters βr , 
1 ≤ r ≤ p which are updated in each iteration according 
to Eq.  (4) without ever revealing them. Only when the 
model has converged do we combine the shares to reveal 
the desired output. This iterative process is broken down 
into several steps, which we present in Protocol 1. Before 
these steps are explained in more detail in the following 
subsections, we evaluate the information that is shared 
between the participating parties in unencrypted form.

Shared information
During the Newton–Raphson iterations, the vector β 
converges to a final value. As intermediate values of β 
might reveal some information about other parties’ input 

data, the parties are allowed to see the converged vector 
only. The MPC technology assures that, apart from the 
actual number of iterations and the output of the model, 
the only other information that is learned by the involved 
parties is:

•	 The number of distinct event times, but not the 
timestamp of these events.

•	 The number of events and censorings per distinct 
event time index, but not the corresponding subjects.

•	 The total number of subjects.
•	 The number of covariates per party.
•	 Scaling factor per covariate (optional).

While this information could remain hidden, this would 
require a lot more effort and computational overhead. 
Because this information does not appear to reveal any 
sensitive information with respect to the individual sub-
jects, we assume that this can be revealed to the involved 
parties.

Data set‑up
After secret-sharing the data ZI , we perform some one-
time manipulations that rely on the data distribution. In 
particular, we sort the rows of the joint, secret-shared 
database such that they are sorted in ascending order of 
event time and exchange some metadata. This is facili-
tated by the fact that one of the parties, say party 1, pro-
vides both the event time period XI and the censoring 
information δI of every subject I.

Securely sorting the rows of the joint database such 
that they are sorted in ascending order of event time cor-
responds to multiplication of the joint database by a suit-
able permutation matrix. Party 1 can locally produce the 
permutation matrix that corresponds to this change from 
the locally-available event times and secret-share it. The 
parties can then jointly perform the permutation.

Additionally, party  1 shares some metadata in unen-
crypted form. First, party  1 shares a list that, for every 
distinct event time, indicates the indices of the rows that 
correspond to subjects that experienced an event. Sec-
ond, party  1 shares a list that, for every distinct event 
time, indicates the indices of the lists that correspond to 
subjects at risk. After this phase, all parties are able to 
select those rows that correspond to patients in Dj and 
Rj without actually knowing which patients they selected 
or the attributes of these patients. The information now 
shared also reveals di.

The reason for sharing this information is that it is 
non-sensitive, yet sharing this information significantly 
simplifies evaluation of the non-trivial summations in 
expressions (5) and (6).
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Secure inner products
The first step of Protocol 1 (in line 3) is to securely com-
pute the inner products [βT

Z
I ] . Since secret sharing 

doesn’t allow for local multiplication of privately known 
numbers (the ZI

r ), the obvious solution is that each party 
k generates secret sharings of ZI

r for each subject I and 
every covariate r known to party k. Then the inner prod-
uct [βT

Z
I ] can be computed by p secure multiplications, 

and m− 1 (local) additions. Note that secure multipli-
cations require a round of communication between the 
parties.

Secure exponentiations
The second step of Protocol  1 (in line  4) is to compute 
[ex] , given the encrypted number [x] (where [x] e.g. 
resembles the secure inner products computed before). 
The sub-protocol for doing this is described in “Secure 
exponentiation protocol’ section as it is of independent 
interest. At this point we only note that the sub-protocol 
suffers from the fixed-point representation of numbers, 
implying that ex only fits within the finite field for a very 
limited range of x.

Assume that secure numbers are represented with 
32 bits and a fixed-point encoding that uses the first 16 
bits to encode the sign bit and integer part. Then the 
range of secure numbers is [−215, 215] with a granularity 
of 2−16 . For ex to fit in this range, we can only allow for 
x ∈ [−12, 12] . Our implementation securely truncates [x] 
such that it falls within this range. The feasible domain 
can be enlarged by using more bits in the representa-
tion of secure numbers; however, this will only margin-
ally increase the feasible domain due to the exponential 
growth whereas the computation time of the protocol is 
significantly increased. As such, we designed the remain-
ing steps of the protocol to cope with the limited feasible 
domain of the secure exponentiation.

Secure gradient and Hessian matrix
The expressions for the gradient and Hessian matrix, 
expressions  (5) and  (6), involve many components that 
are non-trivial to evaluate in the encrypted domain. We 
present our discussion in terms of the gradient since 
the computation of the Hessian can be done in a similar 
fashion.

Due to the data set-up phase, all parties know which 
rows in the joint secret-shared database correspond to Dj 
and Rj for all j ∈ {1, . . . , J } . Additionally, the multiplica-
tion by dj can be performed by every party locally as their 
values have also been exchanged. We thus need to show 

how 
∑

I∈Rj
ZI
r exp[β

T
Z
I ]

∑

I∈Rj
exp[βT

Z
I ]

 can be evaluated securely and 

accurately. This is especially challenging due to the lim-
ited feasible domain of the secure exponentiations that 
was discussed before. We will elaborate on our approach 
to evaluate the fraction accurately.

For the remainder of this section, without loss of 
generality, we assume that the subjects I, which are 
sorted according to ascending event time, are num-
bered from 1 to n. Let rj denote the number of sub-
jects at risk at the j-th distinct event time. Then, by 
choice of our ordering and numbering, we find that 
Rj = {n− rj + 1, n− rj + 2, . . . , n} . We denote

and are thus primarily interested in the values of Gk
r  for 

k = n− rj + 1 , j = 1, . . . , J  , as these Gk
r  correspond to 

the 
∑

I∈Rj
ZI
r exp[β

T
Z
I ]

∑

I∈Rj
exp[βT

Z
I ]

.

Due to the limited feasible domain of the secure expo-
nentiation and the corresponding truncation, it is highly 
likely that direct, secure evaluations of expression  (7) 
result in inaccurate values. Fortunately, one may see that 
Gk
r  is a weighted average of Zi

r , meaning that it is the ratio 
between weights that impacts the final value rather than 
the absolute weights. In particular, one may write

where ηki ∈ (0, 1] , to see that we only truly care about the 
ratio between the various exponentiated inner products. 
This seems to solve the challenge posed by the limited 
range of exponentiation; one could directly compute the 
Gk
r  from the approximated ηki  for all relevant k. However, 

Gk
r  needs to be computed for k = n− rj + 1 , j = 1, . . . , J  

and the j-th evaluation requires the computation of rj 
values of ηki  . As we expect J = O(n) this implies secure 
evaluation of roughly 12n

2 reciprocals per iteration of the 
Newton–Raphson procedure, which is expensive. This 
observation motivated the following alternative, recur-
sive evaluation of relation (8):

(7)Gk
r :=

Zk
r e

βT ·Zk
+ · · · + Zn

r e
βT ·Zn

eβ
T ·Zk

+ · · · + eβ
T ·Zn

(8)

Gk
r =

Zk
r

1+ eβ
T ·Zk+1−βT ·Zk

+ · · · + eβ
T ·Zn−βT ·Zk

+ · · ·+

Zn
r

eβ
T ·Zk−βT ·Zn

+ · · · + eβ
T ·Zn−1−βT ·Zn

+ 1

=: ηkkZ
k
r + · · · + ηknZ

n
r ,

(9)

Gn
r = Zn

r

Gk−1
r = Gk

r + θk−1 · (Zk−1
r − Gk

r ), k = 2, . . . , n
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where

is equal to ηkk above and assumes values in (0,  1). This 
recursive approach requires n secure evaluations of 
a reciprocal per iteration of the Newton–Raphson 
procedure.

In the final expressions it becomes clear that there is 
no need to compute ex with high accuracy when x is not 
close to 0. If x is negative and large, then the contribution 
of that term to θ is negligible and can be approximated 
with zero. If x is positive and large, then the contribution 
of that term to θ indicates that θ will be close to zero. The 
fact that θ is close to zero may be more important than 
how close it is exactly (e.g. 10−5 or 10−10).

The described protocol for computing Gk
r  is iterative, 

meaning that inaccuracies in an early stage may propa-
gate throughout all later iterations. However, our experi-
ments show that the recursive approach yields sufficiently 
accurate results for our purposes.

Updating the model parameters
The model parameters β are updated as in Eq.  (4). The 
main challenge is, given the scaled Hessian matrix and 
gradient vector, to compute the inverse of the p× p 
Hessian matrix H in the encrypted domain. Once we 
have computed the inverse Hessian matrix, the remain-
ing matrix vector product is simply a number of secure 
inner products. The matrix inverse protocol is described 
in “Matrix inverse protocol” section.

Stopping criterion
The protocol keeps iterating until one of two conditions is 
met: it either completed a pre-defined maximum number 
of iterations or the model has converged. We say that the 
model is converged if all elements of the absolute model 
update |βt+1 − βt | are smaller than a pre-defined con-
vergence threshold τ . Since the absolute model update is 
secret-shared, we securely compute the binary output of 
maxr |β

t+1
r − βt

r | < τ and reveal this binary output to the 
participating parties.

Secure exponentiation protocol
In this section we describe a protocol for computing [ax] 
from a public base a ∈ R≥0 and secret exponent [x]. In 
particular, this protocol can be used for evaluating [ex] . 
We also present a wrapper for the secure exponentia-
tion in case x cannot be guaranteed to be in the feasible 
domain.

(10)

θk−1 :=
1

1+ eβ
T ·Zk−βT ·Zk−1

+ · · · + eβ
T ·Zn−βT ·Zk−1

The exponent x should be in a range such that ax 
can be represented in the finite field. As such, it is 
assumed that xL, xU ∈ R are provided such that ex can 
be meaningfully represented in the finite field for all 
x ∈ [xL, xU ] . For example, if a = 2 and secure numbers 
are represented with 32 bits, encoded as unsigned fixed 
points with 20 integral bits and 12 fractional bits, then 
−12 ≤ xL < xU ≤ 20.

The solution that we describe implements separate 
protocols for exponentiation by an integer exponent and 
exponentiation by a non-integer exponent. The former 
protocol is exact, but is not applicable to non-integer 
exponents. It is complemented by the latter protocol, 
which is more broadly applicable at the costs of accu-
racy. The higher-level protocol for securely evaluating 
exponentiation splits the provided exponent into an inte-
ger and non-integer part and then deduces the intended 
result from these two protocols. The outline of the proto-
col is presented in Protocol 2.

We will show that the relative error of the approxima-
tion for az can be quantified and improved by comput-
ing a higher-order approximation polynomial. Since the 
final approximation for ax is the product of an exact term 
and term with bounded relative error, it follows that the 
approximation for ax of this protocol also has bounded 
relative error and can be tailored to the specific needs.

The above outline is identical to the approach of This-
sen [27, Chapter 5]; however, our implementation differs 
from theirs on several points. Firstly, we use probabilis-
tic truncation opposed to their more expensive deter-
ministic truncation. This choice relates closely to the 
second difference: we utilize a MacLaurin series in our 
approximation of [az] , Thissen uses the polynomial p1045 
from [28] instead. The MacLaurin series is more flexible 
in the sense that it works for negative and positive z and 
it can be easily computed for any base b. Instead, p1045 
only provides guarantees on the relative error for posi-
tive z and requires b = 2 . This inflexibility is justified by 
the fact that the same accuracy can be achieved with a 
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lower-degree polynomial approximation. Thirdly, This-
sen’s protocol for computing [2y] is based on a bit decom-
position of [y], whereas our protocol depends on additive 
blinding.

We now discuss the elements of our secure exponentia-
tion in more detail.

Reduce input space
It suffices to have a protocol that computes [ax] from an 
integer base a and a secret-shared fixed point [x]. To see 
this, note that one can write bx = ax loga b . As such, we 
can just reformulate our problem of computing [bx] to 
computing [ax̃] for any integer base a.

Negative exponents are bothersome to work with, 
especially in a finite field. Instead, it is more convenient 
to work only with positive exponents x. To this end we 
could first securely compute the sign of x and denote it by 
[δ] , where δ = (x ≥ 0) . That is, δ = 1 if x is non-negative 
and δ = 0 if x is negative. Then we compute the exponen-
tiation of the positive value y = x − (1− δ)xL . Finally, we 
compute ex = δ · ey + (1− δ) · ey · exL . This solution dou-
bles the range of acceptable x for a given modulus N at 
the cost of a single secure comparison.

Split exponent
Splitting the exponent into an integer part and a non-
integer part can be done in various ways. Rounding [x] 
to the nearest integer requires an intensive secure com-
parison protocol, but we can use probabilistic truncation 
(see [29, Protocol  4.32], or [30, Protocol  2]) instead to 
avoid the secure comparison at a small loss of accuracy. In 
particular, if we let [y] denote the result of a probabilistic 
truncation of [x] then y can both be the nearest smaller or 
the nearest larger integer to x. The non-integral part [z] is 
then computed as [x] − [y] and assumes a value in (−1, 1).

Integer exponent
Assume we have m parties having an additive secret-sharing 
of x modulo N, and we would like to compute [ay] , where a 
is a known integer and [y] is a secret-shared integer.

The outline of the subprotocol is to additively blind 
[y] with [

∑

m ri] , compute the exponentiation with the 
resulting public value ỹ and correct the final result for 
blinding. Here, the ri are random numbers with σ bits 
more than y. In order to produce an efficient solution 
we restrict the length of y such that m · y · 2σ < N  ; that 
is, the blinded version of y should fit in the finite field. 
The subprotocol is presented in Protocol 3. Note that the 
value of ỹ obtained in step 3 has not been reduced since 
0 ≤ ỹ = −y+

∑m
i=1 ri ≤ m · y · 2σ < N .

Non‑integer exponent
We just described a protocol for computing [ay] for inte-
ger [y]. The standing challenge is to perform a secure 
exponentiation with a secret floating-point exponent z. 
We approach this challenge with a polynomial approxi-
mation of exponentiation; in particular, we base our 
approach on the MacLaurin series of es . This approach is 
justified by a short derivation that is presented in Addi-
tional file 1.

The subprotocol for exponentiation with a non-integer 
exponent z is presented in Protocol 4. In the protocol, the 
log-function denotes the natural logarithm. For a given 
base a and a given range [−Z,Z] that contains z, the rela-
tive error of the approximation can be made arbitrarily 
small by choosing an appropriate number k̃ of terms. For 
our purposes, k̃ typically assumes a value close to 7. Note 
that there is no need for expensive secure reciprocals as 
the reciprocals 1/k! can be computed in the plain.

Wrapper for truncation
With some extra work and three secure comparisons in 
total, the earlier described method for reducing the input 
space to x ≥ 0 can be extended to also accept x outside 
the interval [xL, xU ] and return [y], where
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The number of secure comparisons can some-
times be reduced to two. For example, if xL and 
xU satisfy xL ≥ −xU then we may translate x to 
x̃ = x − (xU + xL)/2 , which needs to be truncated to the 
interval [−(xU − xL)/2, (xU − xL)/2] , which is symmetric 
around zero. One secure comparison reduces this case 
to truncating |x̃| to [0, (xU − xL)/2] and the second com-
parison is required to perform the actual truncation. The 
results of the secure comparisons can later be reused in 
order to obtain the desired result.

Matrix inverse protocol
In this section we explain the idea of Blom et al. [31] for 
a matrix inversion circuit that is suitable for translation 
to the encrypted domain (garbled circuits, homomor-
phic encryption, or secret sharing), yielding an efficient 
solution for secure matrix inversion. Since this solution 
is already implemented in the MPyC library for secret-
shared integers, we tweak the implementation to accept 
secret-shared fixed points.

We first describe the solution by Blom et al. and then 
discuss the changes that we made such that the protocol 
accepts fixed-point numbers.

Matrix inverse for integers
We have a d-by-d (encrypted) integer matrix A and 
would like to compute its inverse (if it exists). The ele-
ments of the inverse will be rational numbers, but one 
can show that both the determinant detA and the adju-
gate adjA = A

−1 detA will be integer-valued, which gives 
a common denominator ( detA ) for the rational elements 
of A−1 . Since detA and adjA are integer-valued, these 
can be separately computed, without rounding errors 
and within a finite field, which is very convenient in the 
encrypted domain.

(11)y =







exU if x > xU ,
ex if xL ≤ x ≤ xU ,
0 if x < xL.

The approach of Blom et al. [31] is described in Proto-
col 5. Steps 1 and 3 are explained in more detail in Addi-
tional file  2. In case the determinant of RA in step  4 is 
zero, we know that matrix A is singular and stop the pro-
tocol. One should note that the term [A−1] in step 3 is the 
inverse of A over Zq , where q is the modulus of the finite 
field. The inverse of A over R is given by (detA)−1adjA , 
where (detA)−1 is the inverse of detA in R . Blom et  al. 
actually reveal both [adjA] and [detA] such that the recip-
rocal of the determinant can be computed in the clear. 
For every application, one should verify that disclosing 
this information for gaining efficiency is acceptable.

In order to be able to properly represent the elements of 
the matrix inverse, the finite field should be large enough. 
Let α denote the maximal absolute value of the elements 
of A . One can show that | detA| ≤ dd/2αd and also derive 
that the maximal absolute value of the elements of adjA is 
upper bounded by (d − 1)(d−1)/2αd−1 [31]. In conclusion, 
computing the matrix inverse in this fashion increases 
the magnitude of elements from α to roughly dd/2αd . The 
modulus of the finite field must be chosen appropriately. 
Since all shares are now much larger, this blow-up puts a 
lot of strain on the devices’ memory. We therefore opt to 
convert the secret-shared elements to a larger field just 
before computing the matrix inverse, and convert them 
back to a smaller field afterwards.

Remarks about the MPyC implementation
Two important aspects need to be taken into considera-
tion when using the MPyC matrix inverse: conversions 
between secure types and secure computation of the 
reciprocal of the determinant.

First, the MPyC implementation assumes that input is 
delivered in the MPyC SecFld format. In particular, we 
require secure conversions from SecInt (for integers) 
or SecFxp (for fixed points) to the required format. 
After constructing the matrix inverse, we need to per-
form another conversion in order to continue with the 
format that we started with.

The current implementation of the MPyC convert, 
starting with a secure number of type SecFld, involves a 
secure comparison and a secure modular reduction. The 
amount of communication required for both operations 
grows linearly in the number of bits k that is used to rep-
resent the secure number. In our case k ≈ log2(d

d/2αd) 
grows fast with increasing matrix dimensions.

Second, as noted before, Blom et  al. choose to dis-
close the determinant of A . However, one might not 
(always) wish to disclose this information, hence we 
opted to implement a variant where this information is 
kept secret. Unfortunately the secure computation of 
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the reciprocal of detA , particularly in the enlarged finite 
field, can be quite expensive.

Matrix inverse for fixed points
In the previous section we discussed several points 
of attention in the implementation of MPyC’s matrix 
inverse. Several additional changes need to be made in 
order to make the MPyC matrix inverse operational with 
numbers that are represented as fixed points: (1) the 
fixed-point numbers need to be scaled to integers and (2) 
this scaling needs to be corrected for later.

Assume that the chosen fixed-point representa-
tion reserves f bits for the fractional part of the num-
ber x. Then 2f x is an integer. One can scale all entries 
in the fixed-point-valued matrix to obtain an integer-
valued matrix 2f A . If we compute the matrix inverse of 
the scaled, integer matrix 2f A , then we obtain 2−f

A
−1 . 

Therefore, in order to correct the initial scaling, we only 
need to correct the final result by multiplying all elements 
of the inverse with 2f  (equivalently: scale the reciprocal of 
the determinant by factor 2f  ). The resulting protocol is 
described in Protocol 6.

Most steps in Protocol 6 are efficient in the sense that 
several operations are performed in the plaintext domain 
rather than the encrypted domain; however, the conver-
sion steps and the computation of the reciprocal of detA 
are quite expensive. Both components scale as a function 
of the number of bits k ≈ log2(d

d/2αd) that are used to 
represent the secure numbers, which we already noted to 
grow fast in the dimensions of the matrix A.

Theoretical performance
This section considers the theoretical performance of the 
various parts of the protocol. In particular, we present the 
theoretical scalability of all components in Table  2. The 

table gives an indication of the dependence of the per-
formance on the number of subjects n and the number 
of covariates p. Some subprotocols also depend on the 
maximum bit-length of plaintext encodings; this depend-
ency is not reflected in Table 2 for clarity. The next para-
graphs outline the origin of the dominant terms in every 
subprotocol.

The preprocessing consists out of a matrix-matrix 
product for sorting of the secret-shared data ( n2 invoca-
tions), where we leverage the efficient inner products in 
MPyC, and a pre-computation of all np(p+ 1)/2 cross-
products of covariates ( ZI

rZ
I
s  ). The significant contri-

bution of the secure exponentiation protocol is mainly 
caused by the fact that it is performed for n(n− 1)/2 
exponents per iteration. The number of invocations and 
communication rounds grows linearly in the precision 
parameter k̃.

The gradient and Hessian are computed from the θk 
[Eq.  (10)]. Since Eq.  (10) is recursive, this requires the 
computation of n secure reciprocals in parallel. The 
Hessian matrix can then be computed by performing 
O(Jp(p+ 1)/2) secure multiplications in parallel. Sub-
sequently, the Hessian matrix needs to be inverted. This 
subprotocol requires two conversions between secure 
types in the MPyC library: from SecFxp to SecFld 
and vice versa. The conversion protocol is dominated by 
a secure modular reduction, which scales linearly in the 
bit-length of the modulus of the enlarged secure field: 
O(p log p) invocations and O(log p) rounds. Converting 
all elements of the matrix in parallel results in the stated 
complexity.

Table 2  Big-O complexity of our (sub)protocols, implemented in 
the MPyC framework

Costs are per iteration unless stated otherwise. An invocation is the amount 
of data send by each party in a multiplication protocol, which also highly 
correlates with the number of operations that need to be performed locally by 
each player. The number of communication rounds is estimated for an ideal 
implementation—our implementation may scale worse than this depending 
on the efficiency of the underlying communication logic. Note that the number 
of distinct event times J is bounded by the number of subjects n. In our 
experiments, they are of the same order of magnitude

Building block Invocations Rounds

Pre-processing (one-time) O(n2 + np2) O(1)

Secure exponentiation O(k̃n2) O(k̃)

Computing G and H O(n+ Jp2) O(n)

Secure matrix inverse O(p3 log p) O(log p)

Update β O(p) O(1)

Checking convergence 
criterion

O(p) O(1)

Secure CPH O(k̃n2 + np2 + p3 log p) O(k̃ + n+ log p)
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Finally, β is updated by performing a matrix-vector 
multiplication after which the convergence criterion is 
verified at the cost of O(p) secure comparisons.

In conclusion, if R is the number of Newton–Raph-
son iterations, then the theoretical performance is 
dominated by O(R(k̃n2 + np2 + p3 log p)) invocations 
in O(R(n+ log p)) rounds. Note that MPyC is not yet 
optimized for reducing the number of communication 
rounds and it is very well possible that the current imple-
mentation of the secure CPH protocol initiates many 
more rounds than optimal.

Results and discussion
To gain insights in the practical scalability of the imple-
mented protocol, we ran several experiments. The main 
purpose of these experiments was to determine the accu-
racy, complexity and scalability of the implementation. 
Naturally, the accuracy of the privacy-preserving CPH 
implementation should be close to that of the baseline 
implementations in order to be useful. However, the 
privacy-preserving implementation is significantly more 
demanding in terms of computational power, storage 
and network communication and therefore the relative 
performance of the protocol should be tested as well. 
In particular, we wonder how the training times grow if 
the input data sets increase in size (considering both the 
number of covariates as well as the number of records)? 
We remark that the gathered training times unavoidably 
depend on the power of the CPUs being used; the abso-
lute data points should therefore be solely used to obtain 
an intuition on the performance of the (sub)protocols.

MPC platform
Our solution can be implemented in any linear secret 
sharing platform. We implemented the solution using the 
MPyC [11] platform, which bases its protocols on Shamir 
secret sharing [12] and pseudorandom secret sharing. A 
benefit of the MPyC platform facilitates asynchronous 
evaluation of MPC protocols, implying that a party can 
perform local computations (e.g. generate random-
ness) while she is waiting for other players’ information. 
Another main reason for using MPyC is its communi-
cation-efficient protocol for performing inner products, 
which is a key operation in our protocol for training the 
CPH model.

Shamir secret sharing and therefore MPyC requires at 
least m ≥ 3 computing parties for security reasons. As 
such, if there are in fact only two parties that provide 
data for training the CPH model, we assume that a semi-
trusted third party (helper) joins the computation such 
that we meet the security requirements. The helper is not 
allowed to learn any sensitive values, including model 
parameters and explanatory covariates. In fact, the helper 

does not even need to learn the final outcome of the 
model. We do assume that the helper is semi-honest and 
that he does not collude with other parties.

Security analysis
Let’s assume two parties aim to jointly compute a secure 
CPH on their vertically-partitioned data. For example a 
study aimed at measuring the impact of drugs registered 
by an insurance agency with respect to the vital status 
and follow-up time that is recorded in a disease specific 
registry. As in any MPC platform, we assume that each 
pair of parties has an authenticated and confidential 
communication channel to securely exchange messages. 
This avoids eavesdroppers to learn any sensitive informa-
tion on the parties’ inputs.

The MPyC framework assumes that (the consortium 
of at least three) parties are honest-but-curious and that 
they do not collude. This means that every party will 
adhere to the protocol and might only try to learn from 
the information that it has received during the execu-
tion of the protocol. The information that is received is 
not supposed to be shared with other parties (colluding). 
If a stronger security model, e.g. with cheater detection, 
or a scenario that allows for just two parties, e.g. without 
semi-trusted helper party, is desired, then another frame-
work must be used and the protocols described in this 
document will have to be re-evaluated. However, in most 
application scenarios this framework is considered to be 
adequate, as each respective data holder is putting their 
own data and reputation on the line, which would make 
it unlikely for them to deviate from the protocol.

Our protocols are built from default computation steps 
that have been implemented within the MPyC platform, 
and therefore inherit its security properties. The only 
exceptions are our new secure exponentiation protocol, 
and the matrix inverse protocol, which both reveal inter-
mediate values. The first one reveals ỹ = −y+

∑m
i=1 ri 

(see step 3 of Protocol 3), where the sensitive value y is 
statistically blinded by the ri , because they have σ more 
bits than y. The second one reveals the matrix RA (see 
step  2 of Protocol  5), which has been proven secure in 
[31].

Experiment
The experimental data were gathered in a distributed set-
ting. Three machines were installed on three different 
(geographical) locations, and the interactive protocol was 
executed with reliable, high-throughput communication 
channels over the internet. All parties had a similar set-
up, the implementation was ran within a Docker environ-
ment on Ubuntu 18.04 LTS. Every machine was equipped 
with 16 GBs of RAM and four virtual cores.
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Accuracy
We ran experiments to validate the accuracy of our 
secure solution for training the CPH model. We used 
three data sets and benchmarked those on three different 
implementations:

•	 Built-in R implementation  [32] (also refered to as 
‘lib’);

•	 Plaintext Newton R implementation (also refered to 
as ‘newton’), and;

•	 Secure Newton implementation (also refered to as 
‘mpc’).

Note that the built-in R implementation uses an alter-
native, more optimized (but also more complex) solver 
resulting in a slightly modified model. It is therefore quite 
possible that this optimizer converges in less iterations. 
Furthermore, it uses the Efron approximation as a default 
for handling tied event times, which we set to Breslow to 
properly compare performance. To fairly compare, we 
also implemented a plaintext variant that uses the New-
ton–Raphson method for optimizing Breslow’s partial 
likelihood function. This proves useful as a benchmark to 
compare the loss of accuracy with the needed number of 
iterations before passing the set threshold.

The reasoning behind benchmarking three implemen-
tations is the following. Differences in accuracy between 
‘lib’ and ‘newton’ are caused by the different solvers. Typi-
cally, this shows that the Newton–Raphson solver that we 
based our protocol on is a decent solver, but the method 
itself is just not optimal. The secure ‘mpc’ implementa-
tion should ideally have identical performance to ‘new-
ton’ as it is based on the same solver. However, both the 
fact that ‘mpc’ uses fixed-point representations and that 
several approximations were made in the secure imple-
mentation imply that differences may occur. Comparing 
‘newton’ and ‘mpc’ gives an experimental indication of 
the accuracy impact caused by making the solver secure.

The analysis was performed on the following default 
lifelines survival datasets  [33] after filtering for missing 
values:

•	 Larynx (90 patients, four covariates);
•	 Leukemia (42 patients, three covariates), and;
•	 Lung (167 patients, eight covariates).

The covariates are distributed among the parties (party 1 
and 2) as given in Table  3. We set the convergence cri-
terion to 2−11 ≈ 4.8828× 10−4 for all implementations. 
The results are presented in Tables 4, 5, and 6. .

For all three datasets, the computed coefficients in 
the secure version (‘coef_mpc’) are close to their plain 

text variants (‘coef_newton’), and the latter are close to 
the ones computed with built-in R solvers (‘coef_lib’). 
The same assertion holds for the computed standard 
errors, indispensable to calculate p-values and confi-
dence intervals for the estimated coefficients. Note that, 
the proposed MPC approach provides p-values that are 
approximated up to the fourth digits and therefore suf-
ficient to derive the same statistical conclusions on 
the study. We conclude that the secure implementa-
tion achieves a much higher level of confidentiality with 
very little impact on accuracy. The difference in terms of 
iterations between the built-in R solver and our less opti-
mized, and less complex, solver is just one. This accept-
able difference in convergence is due to the fact that we 
do not optimize the step-halving procedure.

System performance
We now evaluate the time needed for the joint servers to 
execute the subprotocols and full protocol. The execution 
time of a protocol is an aggregate of computation time 
(the server is performing computations) and communi-
cation time (the server is sending, receiving or waiting 
for messages from other players). We do not distinguish 
between these two for two reasons. First, the MPyC 
framework that we use executes the protocols asynchro-
nously. This renders distinguishing between and moni-
toring of different modes of operation very delicate and 
the framework provides no support for doing so. Sec-
ond, we also ran local experiments on a single server that 
simulated a multi-party execution of the protocol. The 
results of these experiments were indistinguishable from 
the final, distributed set-up. This observation suggests 
that, given the network conditions during our distributed 
experiments, the communication cost in our distributed 
set-up is negligible compared to the computation cost.

To benchmark the system performance of the secure 
implementation, we first elaborate upon the system per-
formance of the matrix inverse and the exponentiation 
protocols, visualized in Figs. 1 and 2 respectively, as these 
protocols dominate the costs of running the overall pro-
tocol. The performance of the entire secure CPH proto-
col is displayed in Fig. 3.

Table 3  Vertical partitioning of covariates per party per dataset

Dataset Covariates party 1 Covariates party 2

Larynx Age Stage_II, Stage_III, Stage_IV

Leukemia Sex LogBC, Rx

Lung Inst, age Sex, ph.ecog, ph.karno, pat.
karno, meal.cal, wt.loss
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Analyzing Fig.  1, we observe a performance in line 
with the theoretical analysis. We remark that the cur-
rent implementation only supports matrix inversions 
of matrix sizes of 2× 2 upto 14 × 14 , due to limitations 
within MPyC and Python that limit the maximum size of 
a floating point.

Figure  2 demonstrates the practical performance of 
the implemented secure exponentiation. It is shown 
that it scales linearly in the number of inputs for various 
variants of the protocol explained in “Wrapper for trun-
cation” section. We observe that the computational com-
plexity of the non-truncated positive variant is mainly 
due to the Taylor series approximation involved in the 
secure exponentiation. That part computes several pow-
ers of some term in series (e.g., eight-term approximation 
requires six secure multiplications in series). The added 
complexity for the other variants are due to the addi-
tional secure comparisons.

The overall experimental performance of our imple-
mentation of the Cox proportional hazards protocol is 
illustrated in Fig. 3.

For these experiments, the convergence criterion 
was disabled and the number of iterations was fixed to 
five for consistency. Note that the secure iterative algo-
rithm needed at most four iterations to convergence 
in our experiments with the lifelines survival datasets. 
The number of covariates in our experiments is limited 
due to the matrix inverse that was discussed before; as 
such, we cannot make any rigorous statements about 
the experimental scaling properties in that dimension. 
Alternatively, the impact of the number of samples on the 
computation time reflects the quadratic scaling that we 
deduced in the complexity analysis.

Table 4  Larynx dataset. Coefficients (coef ) and standard error (se) are listed for each implementation

Convergence was reached in three iterations for ‘lib’, and in four iterations for ‘newton’ and ‘mpc’. The secure implementation ‘mpc’ took 740 seconds to complete

Covariates coef_lib coef_newton coef_mpc se_lib se_newton se_mpc

Age 0.018900 0.018902 0.018906 0.014251 0.014251 0.014228

Stage_II 0.138424 0.138564 0.138550 0.462319 0.462319 0.462293

Stage_III 0.638148 0.638350 0.638260 0.356090 0.356090 0.356112

Stage_IV 1.693331 1.693056 1.692993 0.422179 0.422179 0.422164

Table 5  Leukemia dataset. Coefficients (coef ) and standard error (se) are listed for each implementation

Convergence was reached in three iterations for ‘lib’, and in four iterations for ‘newton’ and ‘mpc’. The secure implementation ‘mpc’ took 167 seconds to complete

Covariates coef_lib coef_newton coef_mpc se_lib se_newton se_mpc

Sex 0.263177 0.263171 0.263107 0.449435 0.449435 0.449439

logWBC 1.593608 1.593619 1.593384 0.329995 0.329995 0.329993

Rx 1.390869 1.390877 1.390930 0.456645 0.456645 0.456630

Table 6  Lung dataset

Coefficients (coef ) and standard error (se) are listed for each implementation. Convergence was reached in two iterations for ‘lib’, in three iterations for ‘newton’ and 
‘mpc’. The secure implementation ‘mpc’ took 3073 seconds to complete

Covariates coef_lib coef_newton coef_mpc se_lib se_newton se_mpc

Inst −0.011852 −0.011861 −0.011856 0.010921 0.010921 0.010930

Age 0.000026 0.000027 −0.000046 0.009779 0.009779 0.009848

Sex −0.251135 −0.251185 −0.251434 0.163212 0.163212 0.163282

ph.ecog 0.615030 0.614995 0.615158 0.204500 0.204500 0.204551

ph.karno 0.023395 0.023392 0.023376 0.010189 0.010189 0.010203

pat.karno −0.009492 −0.009487 −0.009491 0.007027 0.007027 0.007047

meal.cal −0.000080 −0.000080 −0.000076 0.000227 0.000227 0.000227

wt.loss −0.011039 −0.011043 −0.011063 0.006606 0.006606 0.006607
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Discussion
A comprehensive clinical study generally benefits from 
combining patient data from different sources  [34, 35]. 
For example, when linking insurance data with a can-
cer registry, the progression of cancer can be monitored 
and reveal how certain treatments can lead to different 
chances of survival.

In this paper we propose a secure version of the CPH 
model. It is one of the most important statistical tech-
niques in medical research for investigating the asso-
ciation between patient survival time and one or more 
explanatory variables. While CPH can show how treat-
ments are associated with survival, it does not explain 
what causes the direction of the association. Positive or 
negative associations might be explained by treatment 
itself, the types of patients the treatment is performed on, 
the progression of the disease, or other factors. Hence, 
conclusions drawn from a CPH model always require 
further scrutiny. This is a common challenge in research 
on observational data, but becomes even more important 
when this data is collected by different parties. Before 
the study commences, all parties need to have sufficient 
understanding of each other’s data collection process. 
Additionally, exploratory analysis and input validation 
tests are needed to rule out any other factors that could 
explain differences in survival.

While the techniques discussed in the paper are prom-
ising, actual usage in a real-world scenario can prove to 
be quite challenging. Before a joint study commences, 
all parties require legal consent and approval to per-
form studies on their (securely) combined data sources. 
This generally requires elaborate discussions between 
the participating organisations with input from differ-
ent disciplines, including legal, management, researchers 
and software developers. Sufficient resources need to be 
allocated for having these multilateral, multidisciplinary 
discussions as this process cannot and should not be 
overstepped.

Still, MPC is an attractive alternative to traditional data 
linkages, where the latter generally has much higher risks 
of privacy breaches  [36]. However, MPC algorithms are 
generally still subjected to inherent technical challenges, 
particularly with respect to large computational com-
plexity. This is also the case for the algorithm presented 
in this paper. The computational burdens of our approach 
limits its usage to clinical studies that involve relatively 
small sample sizes (such as used in [37–39]), however it 
represents an important starting point for future research 
on the development MPC algorithms.

Future work
The accuracy of the solution (and possibly the scalabil-
ity) of the protocol through the size of the secret-sharing 

Fig. 1  Performance of the matrix inverse protocol. This figures 
demonstrates the scalability of the matrix inverse in the number of 
covariates (dimension of the matrix). The filled data points are based 
on an average of 100 runs per datapoint. The open data points are 
based on a single run. We need to perform one matrix inversion 
per iteration of the secure CPH protocol. Remark: the current 
implementation supports matrix inversions of matrix sizes of 2× 2 
upto 14× 14

Fig. 2  Performance of the exponentiation protocol. The data points 
are based on an average of 100 runs per datapoint. We observe a 
linear scaling in the size of the vector x. Remark: we need n(n− 1)/2 
invocations of the exponentiation, where n is the number of sample 
(or patients), resulting in quadratic scaling in the number of samples. 
A more elaborate explanation of the legend; Green: exponents are 
assumed to be in the interval [0, 12]. No truncation is performed to 
enforce this, resulting in zero secure comparisons to perform the 
exponentiation; Orange: exponents are assumed to be in the interval 
[−12, 12] . No truncation is performed to enforce this, however one 
secure comparison needed to deal with negative exponents; Blue: 
given an interval [−x , y] (e.g., [−12, 12] ), all exponents are truncated 
to fit in this range to prevent overflows. Two secure comparisons are 
needed to achieve this
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modulus suffers from the limitation of MPyC to fixed-
point arithmetic. Once floating-point arithmetic becomes 
available in the MPyC framework, we might be able to 
significantly improve the accuracy (and scalability) of 
the solution. Furthermore, floating-point arithmetic will 
greatly improve memory usage of the matrix inverse sub-
protocol, we expect that the maximal dimension of the 
matrix to invert is no longer bounded by 14 × 14.

We can greatly reduce the computation time of the 
overall protocol by parallelizing the exponentiations that 
need to be performed in every iteration. Parallelization is 
currently not supported in the MPyC framework. Low-
hanging fruit would be to only parallelize the generation 
of randomness needed in the exponentiation (sub)Pro-
tocol 3. An alternative could be to precompute this ran-
domness before execution of the protocol.

Finally, it would be interesting to investigate solutions 
with slightly different accuracy-efficiency-privacy trade-
offs. For example, one could be interested in a more effi-
cient and scalable matrix inversion protocol even if it 
provides weaker privacy guarantees.

Conclusions
A secure version of the Cox proportional hazards model 
enables researchers to study survival probabilities of 
patients while taking into account covariates over dis-
tributed databases. Data from multiple institutions no 
longer has to be shared or combined to perform a com-
prehensive study of patient survival. This provides strong 
protection of patient data while enabling novel forms of 
research. Our secure version of the CPH allows for more 
information to be included in clinical studies, which 

potentially can lead to new insights on which factors 
impact the survival of patients.

The secure solution is comparable with the plaintext 
solver in terms of accuracy and convergence speed. The 
computation time is considerably larger, however the 
theoretical complexity is still cubic in the number of 
covariates, and quadratic in the number of subjects.

In conclusion, the solution in this paper can enable 
organisations to safely perform parametric survival anal-
ysis on vertically-distributed medical data, while guaran-
teeing a high level of security and privacy.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12911-​022-​01771-3.

Additional file 1: Exponentiation approximation. It describes the details 
of the MacLaurin series approximation in “Non-integer exponent” section

Additional file 2: Matrix inversion background. It briefly introduces core 
components of the secure matrix inversion protocol by Blom et al. [31], as 
referred to in “Matrix inverse protocol” section.

Acknowledgements
The authors would like to thank Daniël Worm (TNO) and Gijs Geleijnse (IKNL) 
for initiating, organizing and guiding this joint research. Also, we thank Frank 
Martin (IKNL) for his efforts in setting up the infrastructure for experiments.

Authors’ contributions
Bart Kamphorst and Thomas Rooijakkers contributed to the design, imple-
mentation and experiments of the privacy-preserving CPH solution and to the 
writing of this manuscript. Thijs Veugen was in the lead of the cryptographic 
design of the privacy-preserving CPH solution and contributed to the writing 
of this manuscript. Matteo Cellamare and Daan Knoors contributed to the use 
case definition and requirements, the experimental set-up and the writing of 
this manuscript. All authors read and approved the final manuscript.

Fig. 3  Performance of the overall Cox proportional hazards protocol, experimental data was gathered by performing a single run per data point. 
The number of iterations per run was fixed to five. The visualized duration is given in minutes per iteration

https://doi.org/10.1186/s12911-022-01771-3
https://doi.org/10.1186/s12911-022-01771-3


Page 17 of 18Kamphorst et al. BMC Medical Informatics and Decision Making           (2022) 22:49 	

Funding
The research activities that have led to this paper were performed in the 
project CONVINCED, a research collaboration between IKNL and TNO, and 
the project SELECTED. These projects were partly funded by TNOs Appl.AI 
program and the Netherlands AI Coalition.

Availability of data and materials
The datasets generated and/or analysed during the current study are available 
in the Lifelines repository [33], https://​github.​com/​CamDa​vidso​nPilon/​lifel​
ines/​tree/​97c45​5d13c​f2aab​a5b99​abd6b​01476​ce441​5b6d3/​lifel​ines/​datas​ets.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Cyber Security and Robustness, Netherlands Organisation for Applied 
Scientific Research, The Hague, The Netherlands. 2 Research and Develop-
ment, Netherlands Comprehensive Cancer Organisation, Eindhoven, The 
Netherlands. 3 Cryptology, Centrum Wiskunde and Informatica, Amsterdam, 
The Netherlands. 

Received: 8 June 2021   Accepted: 20 January 2022

References
	1.	 Hippisley-Cox J, Coupland C. Development and validation of risk predic-

tion equations to estimate survival in patients with colorectal cancer: 
cohort study. BMJ. 2017. https://​doi.​org/​10.​1136/​bmj.​j2497.

	2.	 Bastiaannet E, Sampieri K, Dekkers OM, de Craen AJM, van Herk-Sukel 
MPP, Lemmens V, van den Broek CBM, Coebergh JW, Herings RMC, van de 
Velde CJH, Fodde R, Liefers GJ. Use of Aspirin postdiagnosis improves sur-
vival for colon cancer patients. Br J Cancer. 2012;106(9):1564–70. https://​
doi.​org/​10.​1038/​bjc.​2012.​101.

	3.	 Geleijnse G, Chiang RC-J, Sieswerda M, Schuurman M, Lee KC, van Soest 
J, Dekker A, Lee W-C, Verbeek XAAM. Prognostic factors analysis for oral 
cavity cancer survival in the Netherlands and Taiwan using a privacy-
preserving federated infrastructure. Sci Rep. 2020;10(1):20526. https://​doi.​
org/​10.​1038/​s41598-​020-​77476-2.

	4.	 ...Deist TM, Dankers FJWM, Ojha P, Scott Marshall M, Janssen T, Faivre-Finn 
C, Masciocchi C, Valentini V, Wang J, Chen J, Zhang Z, Spezi E, Button 
M, Jan Nuyttens J, Vernhout R, van Soest J, Jochems A, Monshouwer R, 
Bussink J, Price G, Lambin P, Dekker A. Distributed learning on 20 000+ 
lung cancer patients—the Personal Health Train. Radiother Oncol. 
2020;144:189–200. https://​doi.​org/​10.​1016/j.​radonc.​2019.​11.​019.

	5.	 Zhu L, Liu Z, Han S. Deep leakage from gradients. 2019. arXiv:​ 1906.​08935.
	6.	 Cox DR. Regression models and life-tables. J R Stat Soc Ser B (Methodol). 

1972;34(2):187–202. https://​doi.​org/​10.​1111/j.​2517-​6161.​1972.​tb008​99.x.
	7.	 Breslow NE. Analysis of survival data under the proportional hazards 

model. Int Stat Rev. 1975;43(1):45–57. https://​doi.​org/​10.​2307/​14026​59. 
arXiv:​ 14026​59.

	8.	 Yao AC. Protocols for secure computations (extended abstract). In: 23rd 
annual symposium on foundations of computer science, Chicago, Illinois, 
USA, 3–5 November 1982, pp. 160–164. IEEE Computer Society (1982). 
https://​doi.​org/​10.​1109/​SFCS.​1982.​38.

	9.	 Damgård I, Pastro V, Smart N, Zakarias S. Multiparty computation from 
somewhat homomorphic encryption. In: Safavi-Naini R, Canetti R, editors. 
Advances in cryptology—CRYPTO 2012. Berlin: Springer; 2012. p. 643–62.

	10.	 Keller M, Orsini E, Scholl P. Mascot: faster malicious arithmetic secure 
computation with oblivious transfer. In: Proceedings of the 2016 ACM 

SIGSAC conference on computer and communications security. CCS ’16, 
pp. 830–842. Association for Computing Machinery, New York, NY, USA 
2016. https://​doi.​org/​10.​1145/​29767​49.​29783​57.

	11.	 Schoenmakers B. MPyC: secure multiparty computation in python. ver-
sion 0.7. https://​github.​com/​lschoe/​mpyc.

	12.	 Shamir A. How to share a secret. Commun ACM. 1979;22(11):612–3. 
https://​doi.​org/​10.​1145/​359168.​359176.

	13.	 Shi H, Jiang C, Dai W, Jiang X, Tang Y, Ohno-Machado L, Wang S. Secure 
multi-party computation grid logistic regression (SMAC-GLORE). 
BMC Med Inform Decis Mak. 2016;16(3):89. https://​doi.​org/​10.​1186/​
s12911-​016-​0316-1.

	14.	 Yu S, Fung G, Rosales R, Krishnan S, Rao RB, Dehing-Oberije C, Lambin P. 
Privacy-preserving cox regression for survival analysis. In: Proceedings of 
the 14th ACM SIGKDD international conference on knowledge discovery 
and data mining. KDD ’08, pp. 1034–1042. Association for Computing 
Machinery, New York, NY, USA. 2008. https://​doi.​org/​10.​1145/​14018​90.​
14020​13.

	15.	 Lu C-L, Wang S, Ji Z, Wu Y, Xiong L, Jiang X, Ohno-Machado L. WebDISCO: 
a web service for distributed cox model learning without patient-level 
data sharing. J Am Med Inform Assoc. 2015;22(6):1212–9. https://​doi.​org/​
10.​1093/​jamia/​ocv083.

	16.	 Dai W, Jiang X, Bonomi L, Li Y, Xiong H, Ohno-Machado L. VERTICOX: Verti-
cally distributed cox proportional hazards model using the alternating 
direction method of multipliers. IEEE Trans Knowl Data Eng. 2020. https://​
doi.​org/​10.​1109/​TKDE.​2020.​29893​01.

	17.	 Domadiya N, Rao UP. Privacy preserving distributed association rule min-
ing approach on vertically partitioned healthcare data. Procedia Comput 
Sci. 2019;148:303–12. https://​doi.​org/​10.​1016/j.​procs.​2019.​01.​023 (The 
second international conference on intelligent computing in data sci-
ences, ICDS2018).

	18.	 Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and 
statistical learning via the alternating direction method of multipliers, vol. 
3, no. 1, pp. 1–122. 2010.https://​doi.​org/​10.​1561/​22000​00016 (Accessed 
12 Aug 2020).

	19.	 O’Keefe CM, Sparks RS, McAullay D, Loong B. Confidentialising survival 
analysis output in a remote data access system. J Priv Confid. 2012. 
https://​doi.​org/​10.​29012/​jpc.​v4i1.​614.

	20.	 Nguyên TT, Hui SC. Differentially private regression for discrete-time 
survival analysis. In: Proceedings of the 2017 ACM on conference on 
information and knowledge management. CIKM ’17, pp. 1199–1208. 
Association for Computing Machinery, New York, NY, USA. 2017. https://​
doi.​org/​10.​1145/​31328​47.​31329​28.

	21.	 Nguyen TT. Differential privacy for survival analysis and user data collec-
tion. Ph.D. Thesis, Nanyang Technological University. 2019. https://​doi.​
org/​10.​32657/​10220/​48212.

	22.	 Dwork C, Roth A. The algorithmic foundations of differential privacy. 
Found Trends Theor Comput. 2013;9(3–4):211–407. https://​doi.​org/​10.​
1561/​04000​00042.

	23.	 van Haaften W, Sangers A, van Engers T, Djafari S. Coping with the general 
data protection regulation: anonymization through multi-party computa-
tion technology. In: IRIS/SCIS conference 2020.

	24.	 Minder CE, Bednarski T. A robust method for proportional hazards regres-
sion. Stat Med. 1996;15(10):1033–47.

	25.	 Zhang J, Chen L, Bach A, Courteau J, Vanasse A, Wang S. Sequential 
representation of clinical data for full-fitting survival prediction. In: 2017 
31st international conference on advanced information networking and 
applications workshops (WAINA), pp 503–508; 2017. IEEE.

	26.	 Wang Y, Hong C, Palmer N, Di Q, Schwartz J, Kohane I, Cai T. A fast divide-
and-conquer sparse Cox regression (2019-09-23). https://​doi.​org/​10.​
1093/​biost​atist​ics/​kxz036. Accessed 10 Aug 2020.

	27.	 Thissen KKK. Achieving differential privacy in secure multiparty computa-
tion. Master’s Thesis, Technische Universiteit Eindhoven, Eindhoven; 2019.

	28.	 Hart JF. Computer approximations. Malabar: Krieger Publishing Co. Inc; 
1978.

	29.	 de Hoogh SJA, van Tilborg H. Design of large scale applications of secure 
multiparty computation : Secure linear programming. Ph.D. Thesis, Tech-
nische Universiteit Eindhoven. 2012. https://​doi.​org/​10.​6100/​ir735​328.

	30.	 Veugen T. Efficient coding for secure computing with additively-homo-
morphic encrypted data. Int J Appl Cryptogr. 2020;4(1):1–15. https://​doi.​
org/​10.​1504/​IJACT.​2020.​107160.

https://github.com/CamDavidsonPilon/lifelines/tree/97c455d13cf2aaba5b99abd6b01476ce4415b6d3/lifelines/datasets
https://github.com/CamDavidsonPilon/lifelines/tree/97c455d13cf2aaba5b99abd6b01476ce4415b6d3/lifelines/datasets
https://doi.org/10.1136/bmj.j2497
https://doi.org/10.1038/bjc.2012.101
https://doi.org/10.1038/bjc.2012.101
https://doi.org/10.1038/s41598-020-77476-2
https://doi.org/10.1038/s41598-020-77476-2
https://doi.org/10.1016/j.radonc.2019.11.019
http://arxiv.org/abs/1906.08935
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.2307/1402659
http://arxiv.org/abs/1402659
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1145/2976749.2978357
https://github.com/lschoe/mpyc
https://doi.org/10.1145/359168.359176
https://doi.org/10.1186/s12911-016-0316-1
https://doi.org/10.1186/s12911-016-0316-1
https://doi.org/10.1145/1401890.1402013
https://doi.org/10.1145/1401890.1402013
https://doi.org/10.1093/jamia/ocv083
https://doi.org/10.1093/jamia/ocv083
https://doi.org/10.1109/TKDE.2020.2989301
https://doi.org/10.1109/TKDE.2020.2989301
https://doi.org/10.1016/j.procs.2019.01.023
https://doi.org/10.1561/2200000016
https://doi.org/10.29012/jpc.v4i1.614
https://doi.org/10.1145/3132847.3132928
https://doi.org/10.1145/3132847.3132928
https://doi.org/10.32657/10220/48212
https://doi.org/10.32657/10220/48212
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1093/biostatistics/kxz036
https://doi.org/10.1093/biostatistics/kxz036
https://doi.org/10.6100/ir735328
https://doi.org/10.1504/IJACT.2020.107160
https://doi.org/10.1504/IJACT.2020.107160


Page 18 of 18Kamphorst et al. BMC Medical Informatics and Decision Making           (2022) 22:49 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	31.	 Blom F, Bouman N, Schoenmakers B, Vreede N. Efficient secure ridge 
regression from randomized gaussian elimination. IACR Cryptol. ePrint 
Arch. 2019.

	32.	 Therneau TM. A package for survival analysis in R. version 2.41-3. https://​
CRAN.R-​proje​ct.​org/​packa​ge=​survi​val.

	33.	 Davidson-Pilon C, Kalderstam J, Jacobson N, sean-reed Kuhn B, Zivich 
P, Williamson M, AbdealiJK Datta D, Fiore-Gartland A, Parij A, WIlson D, 
Gabriel Moneda L, Moncada-Torres A, Stark K, Gadgil H, Jona Singaravelan 
K, Besson L, Peña MS, Anton S, Klintberg A, GrowthJeff Noorbakhsh J, 
Begun M, Kumar R, Hussey S, Golland D. jlim13: CamDavidsonPilon/life-
lines: V0.25.4. https://​doi.​org/​10.​5281/​zenodo.​40027​77.

	34.	 Biro S, Williamson T, Leggett JA, Barber D, Morkem R, Moore K, Belanger 
P, Mosley B, Janssen I. Utility of linking primary care electronic medical 
records with Canadian census data to study the determinants of chronic 
disease: an example based on socioeconomic status and obesity. BMC 
Med Inform Decis mak. 2016;16(1):1–8.

	35.	 Movsas A, Ibrahim R, Elshaikh MA, Lamerato L, Lu M, Sitarik A, Pradhan 
D, Walker EM, Stricker H, Freytag SO, et al. Do sociodemographic factors 
influence outcome in prostate cancer patients treated with external 
beam radiation therapy? Am J Clin Oncol. 2016;39(6):563–7.

	36.	 El Emam K, Buckeridge D, Tamblyn R, Neisa A, Jonker E, Verma A. The 
re-identification risk of Canadians from longitudinal demographics. BMC 
Med Inform Decis Mak. 2011;11(1):1–12.

	37.	 Wilkins RM, Pritchard DJ, Omer EB Jr, Unni KK. Ewing’s sarcoma of bone. 
experience with 140 patients. Cancer. 1986;58(11):2551–5.

	38.	 Stiff P, Bayer R, Kerger C, Potkul R, Malhotra D, Peace D, Smith D, Fisher S. 
High-dose chemotherapy with autologous transplantation for persistent/
relapsed ovarian cancer: a multivariate analysis of survival for 100 con-
secutively treated patients. J Clin Oncol. 1997;15(4):1309–17.

	39.	 Ikeda K, Kumada H, Saitoh S, Arase Y, Chayama K. Effect of repeated 
transcatheter arterial embolization on the survival time in patients with 
hepatocellular carcinoma. An analysis by the cox proportional hazard 
model. Cancer. 1991;68(10):2150–4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://doi.org/10.5281/zenodo.4002777

	Accurate training of the Cox proportional hazards model on vertically-partitioned data while preserving privacy
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Cox proportional hazards
	Secure multi-party computation
	Related work

	Methods
	Participating parties and their data
	Optimizing Breslow’s approximation
	Secure CPH protocol
	Overview secure CPH protocol
	Shared information
	Data set-up
	Secure inner products
	Secure exponentiations
	Secure gradient and Hessian matrix
	Updating the model parameters
	Stopping criterion

	Secure exponentiation protocol
	Reduce input space
	Split exponent
	Integer exponent
	Non-integer exponent
	Wrapper for truncation

	Matrix inverse protocol
	Matrix inverse for integers
	Remarks about the MPyC implementation
	Matrix inverse for fixed points

	Theoretical performance

	Results and discussion
	MPC platform
	Security analysis
	Experiment
	Accuracy
	System performance

	Discussion
	Future work


	Conclusions
	Acknowledgements
	References


